Whether it is new and groundbreaking research results, university topics or events – in our press releases you can find everything you need to know about the happenings at 51ÁÔÆæ. To subscribe, just send an email to ott@pvw.uni-frankfurt.de
Theodor-W.-Adorno Platz 1
60323 Frankfurt
presse@uni-frankfurt.de
A research team with members from 51ÁÔÆæ Frankfurt and the University of Michigan in the USA is using bacterial biosynthesis to produce an antibiotic containing fluorine –The technology is being commercialized by a startup
The use of the element fluorine to modify active substances is an important tool in modern drug development. A team at Goethe University Frankfurt has now achieved an important “first" by successfully fluorinating a natural antibiotic via targeted bioengineering. With this method, an entire substance class of medically relevant natural products can be modified. The method has enormous potential for the manufacture of new antibiotics against resistant bacterial pathogens and for the (further) development of other drugs. The startup kez.biosolutions GmbH will bring these research results to the application stage (Nature Chemistry, DOI 10.1038/s41557-022-00996-z).
FRANKFURT/MAIN. Active
drug agents have been chemically modified with fluorine for decades, owing to
its numerous therapeutic effects: Fluorine can strengthen the bonding of the
active agent to the target molecule, make it more accessible to the body, and
altering the time it spends in the body. Nearly half of the small-molecule drugs
(molecules up to approx. 100 atoms) currently approved by the U.S. Food and
Drug Administration (FDA) contain at least one chemically bound fluorine atom.
These include such different drugs as cholesterol-lowering agents,
antidepressants, anticancer agents and antibiotics.
Bacteria and fungi often manufacture
complex natural compounds to obtain a growth advantage. One possible route for the
development of drugs from natural compounds is to modify these substances by
adding one or more fluorine atoms. In the case of the antibiotic erythromycin,
for example, the attached fluorine atom confers important advantages. The new erythromycin
manufactured via this process can be accessed more easily by the body and is
more effective against pathogenic microorganisms that have developed resistance
to this antibiotic. However, the synthetic-chemical methods for inserting
fluorine into natural substances are very complicated. Owing to the chemical
and reaction conditions that are necessary, these methods are frequently "brutal," says Martin Grininger, Professor for Organic
Chemistry and Chemical Biology at 51ÁÔÆæ. "This means,
for example, that we are very limited in selecting the
positions where the fluorine atom can be attached," he adds.
A German-U.S. scientific team headed by Prof.
Martin Grininger and Prof. David Sherman, Professor of Chemistry at the
University of Michigan, has now succeeded in utilizing the biosynthesis of an
antibiotic-producing bacteria. In this process, the fluorine atom is
incorporated as part of a small substrate during the biological synthesis of a
macrolide antibiotic. “We introduce the fluorinated unit during the natural manufacturing
process, an approach that is both effective and elegant," stresses Grininger, "This gives us great flexibility when
positioning the fluorine in the natural substance – and allows us to influence
its efficacy."
To this end the project leaders Dr.
Alexander Rittner and Dr. Mirko Joppe – both members of Grininger's research
group in Frankfurt – inserted a subunit of an enzyme called fatty acid synthase
into the bacterial protein. The enzyme is naturally involved in the
biosynthesis of fats and fatty acids in mice. The fatty acid synthase is not
very selective in processing the precursors, which are also important for the
manufacture of antibiotics in bacteria, Rittner explains. With an intelligent
product design, the team succeeded in integrating a subunit of the murine
enzyme into the corresponding biosynthetic process for the antibiotic. "The exciting part is that, with
erythromycin, we were able to fluorinate a representative of a gigantic substance
class, the so-called polyketides," says Rittner. “There are about 10,000 known
polyketides, many of which are used as natural medicines –for example, as
antibiotics, immunosuppressives or cancer drugs. Our new method thus possesses
a huge potential for the chemical optimization of this group of natural substances
– in the antibiotics primarily to overcome antibiotic resistance." To exploit this potential, Dr. Alexander Rittner
founded the startup kez.biosolutions GmbH.
Prof. Martin Grininger has been conducting
research on the tailor-made biosynthesis of polyketides for several years. "Our success in fluorinating macrolide
antibiotics is a breakthrough we worked hard to achieve and of which I am now
very proud" he
says. “This success is also an impetus for the future. We are already testing
the antibiotic effect of various fluorinated erythromycin compounds and
additional fluorinated polyketides. We intend to expand this new technology to
include additional fluorine motifs in collaboration with Prof. David Sherman and
his team at the University of Michigan in the U.S."
The search for drugs that overcome
antibiotic resistance is a long-term task: depending on how frequently they are
used, all antibiotics naturally cause resistances sooner or later. Against this
background Dr. Mirko Joppe also believes that his work has broader implications
for society. "Research on antibiotics is not economically
lucrative for various reasons. It is therefore the task of the universities to
close this gap by developing new antibiotics in cooperation with pharmaceutical
companies," he explains. "Our technology can be used to generate new antibiotics
simply and quickly and now offers ideal contact points for projects with
industrial partners."
The research work on polyketides described
above was supported by the Volkswagen Foundation (within the framework of a Lichtenberg
Professorship), the LOEWE MegaSyn research initiative funded by the Hessian
Ministry for Science and the Arts, and the National Institute of Health in the U.S.
Publication: Alexander
Rittner, Mirko Joppe, Jennifer J. Schmidt, Lara Maria Mayer, Simon Reiners,
Elia Heid, Dietmar Herzberg, David H. Sherman, Martin Grininger: Chemoenzymatic synthesis of fluorinated
polyketides. Nature Chemistry (2022)
Image
to download:
Caption:
Scientists working at 51ÁÔÆæ
Frankfurt have created an enzyme capable of producing fluorinated antibiotics
via a series of reactions. For clarity, the different regions of the hybrid
that interact in this context are shown in different colors. (Graphic: Grininger)
Additional
Information:
Prof. Dr. Martin Grininger
Institute for Organic Chemistry and Chemical Biology
Buchmann Institute for Molecular Life Sciences
51ÁÔÆæ Frankfurt
Frankfurt/Main, Germany
Tel.: +49 (0)69 798-42705
grininger@chemie.uni-frankfurt.de