Whether it is new and groundbreaking research results, university topics or events – in our press releases you can find everything you need to know about the happenings at 51ÁÔÆæ. To subscribe, just send an email to ott@pvw.uni-frankfurt.de
Theodor-W.-Adorno Platz 1
60323 Frankfurt
presse@uni-frankfurt.de
New publication on the proceedings of an important conference at the Institute for Law and FinanceÂ
Everyone is talking about green banking – and were too at the recent global climate conference in Glasgow. But to what extent are economic concepts really forward-looking and green? A book published by the Institute for Law and Finance at 51ÁÔÆæ looks at this question.
FRANKFURT. “Green Banking and Green Central Banking: What are the
right concepts?" This is the title of a book in English that has now appeared
as the ninth in the series Future of the Financial Sector – to coincide with
the debates at the 26th UN Climate Change Conference in Glasgow,
which ended last
Friday. Green banking was
a hot topic at the conference, known internationally as COP26.
The book, published by De Gruyter, Berlin,
comprises papers presented at a conference held by the Institute for Law and
Finance (ILF) of 51ÁÔÆæ in January 2021 that dealt with questions related
to green banking and green central banking. Over 1,000 people took part online in
this conference. The book, edited by Andreas Dombret and Patrick Kenadjian, contains
the opening address on the topic of climate change and central banking by
Christine Lagarde, President of the European Central Bank, and remarks by Jens
Weidmann, President of the Deutsche Bundesbank, on the role central bankers
should play in combating climate change. Further distinguished authors include
senior policy makers, bankers and investors, among others Günther Bräunig, CEO
of KfW Bankengruppe; Werner Hoyer, President of the European Investment Bank (EIB);
Wiebe Draijer, Chairman of the Managing Board, Rabobank; Christian Sewing, CEO
of Deutsche Bank; Jose Manuel Campa, Chairman of the European Banking Authority;
John Berrigan, Director General, DG Financial Stability, Financial Services and
Capital Markets Union (FISMA), European Commission; and Jörg Kukies, State Secretary
at Germany's Federal Ministry of Finance. They write about the tasks that their
institutions could assume in the battle against climate change.
Publication: Green Banking and Green Central Banking: Andreas Dombret and Patrick S.
Kenadjian (eds.), Vol. 24, Institute for Law and Finance Series, De Gruyter,
English, 2021, PDF & EPUB ISBN: 9783110752892, €69.95, bound edition ISBN:
9783110752878, €69.95.
Picture
to download:
Caption:
The book on the proceedings
of the conference in the ILF Series (Vol. 24) published by De
Gruyter.
The ILF conference took place on 25 January
2021. Further details on the speakers and the contents of the conference can be
found under the following link:
Further
information:
Dr Rolf Friedewald, Managing Director
Institute for Law and Finance
Theodor-W.-Adorno-Platz
3
60323
Frankfurt am Main
Tel.: +49(0)69-798-33626
Email: friedewald@ilf.uni-frankfurt.de
51ÁÔÆæ and Frankfurt Institute for Advanced Studies agree on closer collaboration in new cooperation agreement
Starting next year, 51ÁÔÆæ and the Frankfurt Institute for Advanced Studies (FIAS) will intensify and expand joint research projects and the exchange of scientific knowledge. A new cooperation agreement has laid the legal foundations for this. The contract was signed yesterday, on November 11th.
FRANKFURT. Interdisciplinary
basic research in the natural sciences, life sciences, neurosciences, and
computer sciences - in these areas 51ÁÔÆæ and FIAS have been
collaborating since the research institutes foundation in 2003. The new
contract will allow for easier coordination of existing projects and the start
of new projects.
"The contract will give us the
freedom to conduct even more interdisciplinary research and to design our
projects complementary to the questions of the two partners," University
President Prof. Dr. Enrico Schleiff said at the signing of the contract
yesterday evening. "However, it is important for us that FIAS is now
closely linked with the university's natural science departments. For example,
a project at FIAS can now also be applied for through the university."
"Even though FIAS acts autonomously
and independently, there have of course always been close ties between the two
institutions. We are looking forward to strengthening and structurally
anchoring this cooperation now," said Prof. Dr. Volker Lindenstruth,
Chairman of the Board of FIAS. He signed the cooperation agreement together
with his board colleague Dr. Rolf Bernhardt.
For example, it is planned to jointly
develop technical and content-related topics of high-performance computing in
the natural and life sciences within the framework of the Center for Scientific
Computing (CSC); only recently, 51ÁÔÆæ was accepted into the
national network for high-performance computing. Another goal is to intensify
cooperation in the life sciences: for example, researchers are already
cooperating on the LOEWE focus on multi-scale modeling (CMMS), which aims to
quantify complex biological systems, and the cluster project ENABLE, which is
investigating the internal balance of cells (homeostasis), to help develop
novel drugs for inflammation and infection diseases. Thus, FIAS will be
involved in preparing the future Excellence Initiative of the Federal Government.
In addition to funding ongoing projects,
51ÁÔÆæ has also developed a fellowship program to support its
researchers in starting new projects with FIAS. In this way, researchers get
the opportunity to devote themselves to new creative and interdisciplinary
approaches to their research at FIAS during a sabbatical.
About 80 scientists work at FIAS, and
several fellows also conduct research and teaching at 51ÁÔÆæ. The
two institutions also work together to promote young researchers; at the
Frankfurt Graduate School for Science (FIGSS) at FIAS and the program to
support doctoral students at the GRADE Center iQbio at 51ÁÔÆæ.
51ÁÔÆæ established FIAS in 2003
as a foundation under civil law. Since then, FIAS has been promoting science in
interdisciplinary, theoretical basic research in the natural and life sciences.
In doing so, it operates as an ambitious, independent scientific institution.
At the same time, FIAS is a hub for research activities at 51ÁÔÆæ
and at various surrounding research institutions and thus will be essential for
the preparation of the next Excellence Initiative.
Images
to download:
Caption: Goethe
University and Frankfurt Institute for Advanced Studies agree on closer
collaboration in new cooperation agreement: 51ÁÔÆæ President Prof. Dr. Enrico Schleiff (2. from
the left) and the chairmen of the board of FIAS, Prof. Dr. Volker Lindenstruth
(left) and Dr. Rolf Bernhardt, after signing the contract (Picture: Sälzer/FIAS)
Further information
Prof.
Dr. Volker Lindenstruth
Frankfurt Institute for Advanced Studies
Faculty
of Computer Science and Mathematics
Goethe-University
069 798 47688
info@fias.uni-frankfurt.de
International research team shows long-range effect of bacterial metabolites for the first time
Bacteria in the intestine pack a wide spectrum of their biomolecules into small capsules. These are transported via the bloodstream to various organs in the body and even absorbed and processed by nerve cells in the brain. This has now been shown for the first time by a team of researchers from 51ÁÔÆæ, FAU (University of Erlangen-Nuremberg) and the University of California in San Francisco. The newly established research method will help to better understand the influence of intestinal bacteria on diseases and could support the development of innovative forms of drug or vaccine delivery.
FRANKFURT. In the human body, bacteria are in the
majority: According to estimates, there are 1.3 bacterial cells for each human
cell. Our bacteria are correspondingly superior to us in their genetic
diversity. All intestinal bacteria together – the intestine's microbiome – have
150 times as many genes as humans. The intestinal bacteria's metabolic products
have a variety of effects on our body: For example, they train our immune cells
and contribute to their maturation, they control metabolic processes in the
body and how often intestinal mucosa cells renew themselves. It is highly
probable that changes in the microbiome's composition contribute to the
development and course of diseases, e.g. neurological disorders or cancer.
The bacterial metabolites act on the cells
of the intestinal mucosa via direct contact. However, how such bacterial
substances travel to peripheral organs, such as the liver, kidney or brain, had
not yet been explained. It was assumed that small capsules (membrane vesicles),
released by bacteria into their environment during normal growth or as a
reaction to stress and filled with bacterial lipids, proteins or also hereditary
RNA molecules, were the means of transport.
An international research team led by Dr
Stefan Momma from the Neuroscience Centre of 51ÁÔÆæ, Professor
Claudia Günther from FAU (University of Erlangen-Nuremberg) and Professor
Robert Raffai from the University of California has now investigated in mice
how bacteria distribute their metabolic products in such vesicles. For this
purpose, the researchers colonized the intestines of mice with E. coli bacteria,
which produced a specific type of gene scissors (Cre) and released these into
their environment via vesicles. The mice cells contained a gene for a red fluorescent
protein, which could be activated by the Cre gene scissors (Cre/LoxP system).
The result: In the subsequent examination
of the mouse tissue, the bacterial vesicles had been absorbed by individual
cells in the intestine, liver, spleen, heart and kidneys as well as by immune
cells. Consequently, functional Cre contained in the vesicles could enter the
cells and lead to the expression of the red marker protein. Even individual
nerve cells in the brain glowed red. Stefan Momma: “Particularly impressive is
the fact that the bacteria's vesicles can also overcome the blood-brain barrier
and in this way enter the brain – which is otherwise more or less hermetically
sealed. And that the bioactive bacterial substances were absorbed by stem cells
in the intestinal mucosa shows us that intestinal bacteria can possibly even
permanently change its properties."
The fluorescence images indicate, says
Momma, that the vesicles were probably distributed throughout the body via the
bloodstream. “The further study of these communication pathways from the bacterial
kingdom to individual mammalian cells will not only improve our understanding
of conditions such as autoimmune diseases or cancer, in which the microbiome quite
obviously plays a significant role. Such vesicles are also extremely
interesting as a new method to deliver drugs or develop vaccines, or as
biomarkers that point to a pathological change in the microbiome."
Publication:
Miriam Bittel, Patrick Reichert, Ilann
Sarfati, Anja Dressel, Stefanie Leikam, Stefan Uderhardt, Iris Stolzer, Tuan
Anh Phu, Martin Ng, Ngan K. Vu, Stefan Tenzer, Ute Distler, Stefan Wirtz, Veit
Rothhammer, Markus F. Neurath, Robert L. Raffai, Claudia Günther, Stefan Momma:
Visualizing transfer of microbial biomolecules by outer membrane vesicles in
microbe-host-communication in vivo. J Extracell Vesicles 2021 Oct;10(12):e12159
Pictures
to download:
Caption:
In the brain of the transgenic mouse, two
nerve cells glow red because they have absorbed membrane vesicles containing
functional protein from intestinal bacteria. Blue: nuclei of the other cells in
the brain tissue. (Photo: Stefan Momma)
Further
information:
Dr Stefan Momma
51ÁÔÆæ Frankfurt, Germany
Institute of Neurology (Edinger Institute)
Neuroscience Centre
Tel.:
+49 (0) 69 6301-84158
stefan.momma@kgu.de