Whether it is new and groundbreaking research results, university topics or events – in our press releases you can find everything you need to know about the happenings at 51. To subscribe, just send an email to ott@pvw.uni-frankfurt.de
Theodor-W.-Adorno Platz 1
60323 Frankfurt
presse@uni-frankfurt.de
International research team examines photoelectric effect with the aid of a COLTRIMS reaction microscope
When light hits a material, electrons can be released from this material – the photoelectric effect. Although this effect played a major role in the development of the quantum theory, it still holds a number of secrets: To date it has not been clear how quickly the electron is released after the photon is absorbed. Jonas Rist, a Ph.D. student working within an international team of researchers at the Institute for Nuclear Physics at 51 Frankfurt, has now been able to find an answer to this mystery with the aid of a COLTRIMS reaction microscope which had been developed in Frankfurt: The emission takes place lightning fast, namely within just a few attoseconds – within a billionths of billionths of a second.
FRANKFURT. It is
now exactly one hundred years ago that Albert Einstein was awarded the Nobel
Prize in Physics for his work on the photoelectric effect.
The jury had not yet really understood his revolutionary theory of relativity –
but Einstein had also conducted ground-breaking work on the photoelectric effect.
With his analysis he was able to demonstrate that light comprises individual
packets of energy – so-called photons. This was the decisive confirmation of Max
Planck's hypothesis that light is made up of quanta, and paved the way for the modern
quantum theory.
Although the photoelectric effect in molecules
has been studied extensively in the meantime, it has not yet been possible to
determine its evolution over time in an experimental measurement. How long does
it take after a light quantum has hit a molecule for an electron
to be dislodged in a specific direction? “The length of time between photon
absorption and electron emission is very difficult to measure because it is
only a matter of attoseconds," explains Till Jahnke, the PhD-supervisor of Jonas
Rist. This corresponds to just a few light oscillations. “It has so far been
impossible to measure this duration directly, which is why we have now
determined it indirectly." To this end the scientists used a COLTRIMS reaction
microscope – a measuring device with which individual atoms and molecules can
be studied in incredible detail.
The researchers fired extremely intense
X-ray light – generated by the synchrotron radiation source BESSY II of
Helmholtz-Zentrum Berlin – at a sample of carbon monoxide in the centre of the reaction microscope. The carbon monoxide molecule consists
of one oxygen atom and one carbon atom. The X-ray beam now had exactly the
right amount of energy to dislodge one of the electrons from the innermost electron
shell of the carbon atom. As a result, the molecule fragments. The oxygen and carbon
atoms as well as the released electron were then measured.
“And this is where quantum physics comes
into play," explains Rist. “The emission of the electrons
does not take place symmetrically in all directions." As carbon monoxide molecules have an outstanding axis, the
emitted electrons, as long as they are still in the immediate vicinity of the molecule,
are still affected by its electrostatic fields. This delays the release slightly
– and to differing extents depending upon the direction in which the electrons
are ejected.
As, in accordance with the laws of quantum
physics, electrons not only have a particle character but also a wave character,
which in the end manifests in form of an interference pattern on the detector.
“On the basis of these interference effects, which we were able to measure with
the reaction microscope, the duration of the delay could be determined indirectly
with very high accuracy, even if the time interval is incredibly short," says
Rist. “To do this, however, we had to avail of several of the possible tricks
offered by quantum physics."
On the one hand the measurements
showed that it does indeed only take a few dozen attoseconds to emit the electron.
On the other hand, they revealed that this time interval is very heavily
dependent on the direction in which the electron leaves the molecule, and that
this emission time is likewise greatly dependent on the velocity of the electron.
These measurements are not only
interesting for fundamental research in the field of physics. The models which
are used to describe this type of electron dynamics are also relevant for many chemical
processes in which electrons are not released entirely, but are transferred to
neighbouring molecules, for instance, and trigger further reactions there. “In
the future such experiments could also help to better understand chemical
reaction dynamics therefore," says Jahnke.
Publication:
Jonas Rist, Kim Klyssek, Nikolay M.
Novikovskiy, Max Kircher, Isabel Vela-Pérez, Daniel Trabert, Sven Grundmann,
Dimitrios Tsitsonis, Juliane Siebert, Angelina Geyer, Niklas Melzer, Christian
Schwarz, Nils Anders, Leon Kaiser, Kilian Fehre, Alexander Hartung, Sebastian
Eckart, Lothar Ph. H. Schmidt,1 Markus S. Schöffler, Vernon T. Davis, Joshua B.
Williams, Florian Trinter, Reinhard Dörner,1 Philipp V. Demekhin, Till Jahnke: Measuring the photoelectron emission delay
in the molecular frame. Nat Commun 12, 6657 (2021).
Picture
download:
Captions:
COLTRIMS_atBESSYii_PhotoMiriamKeller.jpg:
High-tech:
COLTRIMS reaction microscope at electron storage ring BESSY II,
Helmholtz-Zentrum Berlin für Materialien und Energie (HZB). Photo: Miriam Weller, 51 Frankfurt
Rist_Jonas_PhotoAlexanderHartung.jpg:
Ph.D.
student Jonas Rist, 51 Frankfurt. Photo: Alexander Hartung, 51 Frankfurt
Further
Information:
Prof. Dr. Till Jahnke
European XFEL and
Institute for Nuclear Physics, 51 Frankfurt, Germany
Tel.: + 49 (0)69-798 47023 (Office)
till.jahnke@xfel.eu
Prof. Dr. Reinhard Dörner
Institute for Nuclear Physics
51 Frankfurt, Germany
Tel. +49 (0)69 798-47003
doerner@atom.uni-frankfurt.de
Shedding new light on the role of tumour suppressor protein pVHL
Transforming Growth Factor beta (TGF-β) is a signalling protein whose dysregulation can cause developmental disorders and cancer. Dr Xinlai Cheng and his colleagues at the 51 Frankfurt have discovered how a tumour suppressor known as pVHL influences signal transmission involving TGF-β. Their findings suggest possible starting points for developing new drugs.
FRANKFURT/HEIDELBERG. Signal
transmission inside cells is a complex process. TGF-β, for example, regulates many
cell functions during the early development of both humans and animals, but
also in adult organisms. The mechanisms involved are not yet fully understood. It
is, however, clear that activated TGF-β initially binds to receptors located on
the cell surface. Inside the cell, the TGF-β receptors in their turn activate a
protein called SMAD3, which then forms complexes with SMAD4 that translocate to
the cell nucleus. There the SMAD proteins mediate the extent to which genes are
activated and translated into proteins and other gene products.
Researchers at the 51 Frankfurt,
Heidelberg University, the German Cancer Research Center (DKFZ), Heidelberg
University Hospital and the University Hospital in Jena have now discovered how
the von Hippel-Lindau tumour suppressor protein (pVHL) intervenes in this
signalling pathway. Tumour suppressors are proteins whose defects or reduced
presence in multicellular organisms are associated with a high risk that cells
will degenerate into tumour cells. In the Journal of Cell Biology the scientists
report the first evidence that pVHL degrades the SMAD3 protein. This occurs before
SMAD3 and SMAD4 associate. pVHL thus inhibits the signalling chain that starts
with activated TGF-β. “We obtained evidence of this both in cultures of human
cells and in Drosophila," says the last author, Dr
Xinlai Cheng. “This suggests that at a very early stage in evolution pVHL
assumed the regulatory function that we have now brought to light."
Xinlai Cheng has been leading a junior research group
at the Buchmann Institute for Molecular Life Sciences at the 51
Frankfurt since 2019. He began the investigations at the Institute of Pharmacy
and Molecular Biotechnology at Heidelberg University. His mentor, Professor
Stefan Wölfl, explained an important finding that emerged from the new-found connection
between pVHL and the TGF-β signalling pathway: “pVHL is known to be involved in
how cells 'feel' oxygen and react to varying oxygen availability. As a result, a
cell's oxygen supply also mediates TGF-β signal transmission."
The researchers' discovery opens up new opportunities for
developing drugs to combat cancer. “If we could, for example, use a substance
to specifically regulate pVHL activity, we would also influence the TGF-β
signalling pathway, which in turn plays a major role in the formation of
tumours, and metastases in particular," says Xinlai Cheng. Tumour cells are
good at adapting to their environment inside the organism and to variations in oxygen
availability. Their very flexible cellular activity helps them to do so. This
activity is regulated by factors including the TGF-β signalling pathway.
Publication:
Jun Zhou, Yasamin Dabiri, Rodrigo A. Gama-Brambila, Shahrouz
Ghafoory, Mukaddes Altinbay, Arianeb Mehrabi, Mohammad Golriz, Biljana
Blagojevic, Stefanie Reuter, Kang Han, Anna Seidel, Ivan Đikić, Stefan
Wölfl, Xinlai Cheng: pVHL-mediated SMAD3
degradation suppresses TGF-β signaling. Journal of
Cell Biology (2022) 221 (1): e202012097
Picture
download:
Caption: Stained liver tissue shows the
complementary occurrence of pVHL and SMAD proteins: Where pVHL (green) is
abundant, SMAD2/3 (red) is scarce, and vice versa. Cell nuclei are stained
blue. The lower right picture shows all three colours combined. Photos: Xinglai
Cheng/51
Further
Information:
Dr.
rer. nat. habil. Xinlai Cheng
Buchmann Institute for Molecular Life Sciences Chemical Biology
AK Cheng
51 Frankfurt
Phone +49 69 798-42718
Cheng@pharmchem.uni-frankfurt.de
Professor Stefan
Wölfl
Institut of Pharmacy and Molecular Biotechnology –
Pharmaceutical Biology, Pharmaceutical Bioanalytics and Molecular Cell Biology
Heidelberg University
Phone +49 6221-544880
wolfl@uni-hd.de