Whether it is new and groundbreaking research results, university topics or events – in our press releases you can find everything you need to know about the happenings at 51. To subscribe, just send an email to ott@pvw.uni-frankfurt.de
Theodor-W.-Adorno Platz 1
60323 Frankfurt
presse@uni-frankfurt.de
Federal and state funding of € 9.2 million for a long-term academy project at 51 and Friedrich Schiller University Jena
Approximately 40,000 letters from Martin Buber's
correspondence with his contemporaries exist, but to this day, they have hardly
been accessible. A funding commitment from the federal and state governments
should now change this: an academy project for the digitalisation and annotation
of this valuable estate will be funded with almost € 400,000 per year.
FRANKFURT. Literature,
art, theology – Martin Buber, one of the most influential thinkers of the
modern German-Jewish intellectual world was in active exchange with the
representatives and institutions in almost every area of intellectual life.
More than 40,000 letters that were written by or to him have been handed down –
particularly in the philosopher's estate in Jerusalem, but also scattered
throughout archives around the world. Making this research treasure accessible
– that is the goal of the new academy project that Professor Christian Wiese, scholar
in the field of Jewish Studies and holder of the Martin-Buber-Chair in Jewish
Religious Philosophy at 51, can now tackle thanks to the funds awarded
by the federal and state governments. All the letters are to be digitalised as
facsimile, and a large portion will also be transcribed, translated and
annotated. The project is designed for 24 years and will be funded with € 9.2
million, of which half will come from the Federal Ministry of Education and
Research and half from the Hessian Ministry of Higher Education, Research and
the Arts. Professor Martin Leiner (Friedrich Schiller University Jena),
Professor Abigail Gillman (Boston University) and the National Library of Israel
are cooperation partners.
“This is wonderful news." Professor Birgitta Wolff, President of Goethe
University, is delighted about the grant. “With this academy project, Christian
Wiese is setting new standards and planting the seed for a work that fits the
time in every way," Wolff remarks, adding that the project is an important
contribution to internationalisation in the digital humanities. “It is in fact
quite special. There is nothing like it in other countries," says Professor
Christian Wiese, who in 2019 concluded one of the last volumes of the edition
of Martin Buber's published writings. The edition of the letters opens
additional perspectives into Buber's life and work and his many interests – but
also into intellectual life overall in the decades between the first World War
and Buber's death in 1965. “Where, if not in Frankfurt, should this project
have its home?" observes Wiese.
“The correspondence of Buber, who lived in
Heppenheim and taught in Frankfurt, can contribute important new insights to
the history of the twentieth century. Especially in our polarised time, we can
learn a lot from the philosopher's approach, which always relied on dialogue
and understanding. Christian Wiese's academy project is for this reason also an
exceptional one in Hessen's research landscape in the humanities. I am very
happy that we can co-fund this project and wish it great success," says
Hessen's minister for Higher Education, Research and the Arts Angela Dorn.
Martin Buber (1868 – 1965) worked at the University
of Frankfurt am Main from 1924 to 1933 – first as lecturer and later as
honorary professor for Jewish religious teachings and ethics. He resigned from
the professorship in 1933 after Hitler took power in anticipation of having his
professorship revoked. He subsequently worked on setting up the Central Office
for Jewish Adult Education with the Reichsvertretung of German Jews until it
was forced to give up its work. Buber emigrated to Israel in 1938 before the
November pogrom. Throughout his entire life, Martin Buber was in contact with
personalities from all areas of intellectual life, including many writers such
as Margarete Susman, Hermann Hesse, Arnold Zweig, Thomas Mann and Franz Kafka.
Here, he did not shy away from controversial discussions. “The letters are a
fascinating mirror of the time and reveal the intellectual network in which
Buber was involved," says Christian Wiese. Perhaps a quarter of the letters
were written by Martin Buber; the rest were written to him. But Martin Buber's personality
and thought are reflected in these as well.
As part of the project, the letters, which
are primarily located in Europe, Israel and the USA, are now to be collected
and grouped according to thematic modules that stretch over several years,
and made digitally accessible in close collaboration with the Academy of
Sciences and Literature in Mainz. Depending on the content, transcripts and –
where necessary – translations from the Hebrew along with annotations will be
added. The academy project provides for three editorial positions and a
doctoral scholarship. Annual conferences are planned, as well as intensive
cooperation with researchers in Israel and the USA. The positions will be
advertised soon so that work can start in the spring.
“Martin Buber and his work are more
relevant than ever,“ says Professor Wiese with conviction. “He is one of the
most important dialogic thinkers of the twentieth century, and his texts are relevant
wherever intercultural or interreligious dialogue takes place. At the same time,
they possess great meaning for issues of political ethics."
Images
may be downloaded here:
Caption:
This letter to Hermann Hesse was written on 16 September 1945, the day after Yom
Kippur, and is the first letter that the philosopher sent from Jerusalem to
Germany after the war and the Shoah.
Further
information
Prof. Dr. Christian Wiese
Martin Buber Chair for Jewish Religious Philosophy
Faculty 06
51
Phone: +49 69 798-33313
E-Mail c.wiese@em.uni-frankfurt.de
Internet:
Research cooperation between 51, University of Kent and the Hannover Medical School
In order for the SARS-CoV2 virus to enter host cells,
its “spike" protein has to be cleaved by the cell's own enzymes - proteases. The
protease inhibitor aprotinin can prevent cell infection, as scientists at
51, the University of Kent and the Hannover Medical School have
now discovered. An aprotinin aerosol is already approved in Russia for the
treatment of influenza and could readily be tested for the treatment of
COVID-19.
FRANKFURT. The
surface of the SARS-CoV-2 virus is studded with spike proteins. The virus needs
these in order to dock onto proteins (ACE2 receptors) on the surface of the
host cell. Before this docking is possible, parts of the spike protein have to
be cleaved by the host cell's enzymes – proteases.
In cell culture experiments with various
cell types, the international scientific team led by Professor Jindrich Cinatl,
Institute for Medical Virology at the University Hospital Frankfurt, Professor
Martin Michaelis, and Dr Mark Wass (both University of Kent) demonstrated that
the protease inhibitor aprotinin can inhibit virus replication by preventing
SARS-CoV2 entry into host cells. Moreover, aprotinin appears to compensate for
a SARS-CoV2-induced reduction of endogenous protease inhibitors in
virus-infected cells.
Influenza viruses require host cell
proteases for cell entry in a similar way as coronaviruses. Hence, an aprotinin
aerosol is already approved in Russia for the treatment of influenza.
Professor Jindrich Cinatl said: “Our
findings show that aprotinin is effective against SARS-CoV2 in concentrations
that can be achieved in patients. In aprotinin we have a drug candidate for the
treatment of COVID-19 that is already approved for other indications and could readily
be tested in patients."
Publication: Denisa Bojkova, Marco Bechtel, Katie-May McLaughlin, Jake E. McGreig, Kevin Klann, Carla Bellinghausen, Gernot Rohde, Danny Jonigk, Peter Braubach, Sandra Ciesek, Christian Münch, Mark N. Wass, Martin Michaelis, Jindrich Cinatl jr. Aprotinin inhibits SARS-CoV-2 replication. Cells 2020,
Further information:
Professor
Dr. rer. nat. Jindrich Cinatl
Institute for Medical Virology
University Hospital Frankfurt am Main
Tel. +49 69 6301-6409
cinatl@em.uni-frankfurt.de
Scientists at 51 within the international consortium COVID19-NMR refine previous 2D models
Chemists at the University of Göttingen and 51 Frankfurt characterise key compound for catalytic nitrogen atom transfer
Catalysts with a metal-nitrogen bond can transfer
nitrogen to organic molecules. In this process short-lived molecular species
are formed, whose properties critically determine the course of the reaction and
product formation. The key compound in a catalytic nitrogen-atom transfer reaction
has now been analysed in detail by chemists at the University of Göttingen and
51 Frankfurt. The detailed understanding of this reaction will allow
for the design of catalysts tailored for specific reactions.
FRANKFURT. The development of new drugs or innovative molecular materials with new properties requires specific modification of molecules. Selectivity control in these chemical transformations is one of the main goals of catalysis. This is particularly true for complex molecules with multiple reactive sites in order to avoid unnecessary waste for improved sustainability. The selective insertion of individual nitrogen atoms into carbon-hydrogen bonds of target molecules is, for instance, a particularly interesting goal of chemical synthesis. In the past, these kinds of nitrogen transfer reactions were postulated based on quantum-chemical computer simulations for molecular metal complexes with individual nitrogen atoms bound to the metal. These highly reactive intermediates have, however, previously escaped experimental observation. A closely entangled combination of experimental and theoretical studies is thus indispensable for detailed analysis of these metallonitrene key intermediates and, ultimately, the exploitation of catalytic nitrogen-atom transfer reactions.
Chemists in the groups of Professor Sven
Schneider, University of Göttingen, and Professor Max Holthausen, 51
Frankfurt, in collaboration with the groups of Professor Joris van Slagern,
University of Stuttgart and Professor Bas de Bruin, University of Amsterdam, have
now been able for the first time to directly observe such a metallonitrene,
measure it spectroscopically and provide a comprehensive quantum-chemical
characterization. To this end, a platinum azide complex was transformed
photochemically into a metallonitrene and examined both magnetometrically and
using photo-crystallography. Together with theoretical modelling, the
researchers have now provided a detailed report on a very reactive
metallonitrene diradical with a single metal-nitrogen bond. The group was furthermore
able to show how the unusual electronic structure of the platinum
metallonitrene allows the targeted insertion of the nitrogen atom into, for
example, C–H bonds of other molecules.
Professor Max Holthausen explains: “The
findings of our work significantly extend the basic understanding of chemical
bonding and reactivity of such metal complexes, providing the basis for a rational
synthesis planning.” Professor Sven Schneider says: “These insertion reactions
allow the use of metallonitrenes for the selective synthesis of organic
nitrogen compounds through catalyst nitrogen atom transfer. This work therefore
contributes to the development of novel ‘green’ syntheses of nitrogen compounds.”
The research was funded by the Deutsche
Forschungsgemeinschaft and the European Research Council.
Publication:
Jian Sun, Josh Abbenseth, Hendrik
Verplancke, Martin Diefenbach, Bas de Bruin, David Hunger, Christian Würtele,
Joris van Slageren, Max C. Holthausen, Sven Schneider: A platinum(II)
metallonitrene with a triplet ground state. Nat. Chem. (2020)
Further
information:
Prof. Dr. Max C. Holthausen
51 Frankfurt am Main
Institute for Inorganic and Analytical Chemistry
Tel.
+49 69 798 29430
max.holthausen@chemie.uni-frankfurt.de
Prof.
Dr. Sven Schneider
Georg-August-Universität
Göttingen
Institute for Inorganic Chemistry
Tel. +49 551 39 22829
sven.schneider@chemie.uni-goettingen.de
Synthetic vesicles are mini-laboratories for customised molecules
Cells of higher organisms use cell organelles to
separate metabolic processes from each other. This is how cell respiration
takes place in the mitochondria, the cell's power plants. They can be compared
to sealed laboratory rooms in the large factory of the cell. A research team at
51 has now succeeded in creating artificial cell organelles and
using them for their own devised biochemical reactions.
FRANKFURT. Biotechnologists
have been attempting to “reprogram" natural cell organelles for other processes
for some time – with mixed results, since the “laboratory equipment" is
specialised on the function of organelles. Dr Joanna Tripp, early career
researcher at the Institute for Molecular Biosciences has now developed a new
method to produce artificial organelles in living yeast cells (ACS Synthetic
Biology: ).
To this end, she used the ramified system
of tubes and bubbles in the endoplasmic reticulum (ER) that surrounds the
nucleus. Cells continually tie off
bubbles, or vesicles, from this membrane system in order to transport substances
to the cell membrane. In plants, these vesicles may also be used for the
storage of proteins in seeds. These storage proteins are equipped with an
“address label" – the Zera sequence – which guides them to the ER and which
ensures that storage proteins are “packaged" there in the vesicle. Joanna Tripp
has now used the “address label" Zera to produce targeted vesicles in yeast
cells and introduce several enzymes of a biochemical metabolic pathway.
This represents a milestone from a
biotechnical perspective. Yeast cells, the “pets" of synthetic biology not only
produce numerous useful natural substances, but can also be genetically changed
to produce industrially interesting molecules on a grand scale, such as
biofuels or anti-malaria medicine.
In addition to the desired products,
however, undesirable by-products or toxic intermediates often occur as well. Furthermore,
the product can be lost due to leaks in the cell, or reactions can be too slow.
Synthetic cell organelles offer remedies, with only the desired enzymes (with
“address labels") encountering each other, so that they work together more
effectively without disrupting the rest of the cell, or being disrupted
themselves.
“We used the Zera sequence to introduce a
three-stage, synthetic metabolic pathway into vesicles," Joanna Tripp explains.
“We have thus created a reaction space containing exactly what we want. We were
able to demonstrate that the metabolic pathway in the vesicles functions in
isolation to the rest of the cell."
The biotechnologist selected an industrially
relevant molecule for this process: muconic acid, which is further processed industrially
to adipic acid. This is an intermediate for nylon and other synthetic
materials. Muconic acid is currently won from raw oil. A future large-scale
production using yeast cells would be significantly more environment-friendly
and sustainable. Although a portion of the intermediate protocatechuic acid is
lost because the vesicle membrane is porous, Joanna Tripp views this as a
solvable problem.
Professor Eckhard Boles, Head of the
Department of Physiology and Genetics of Lower Eukaryotes observes: “This is a
revolutionary new method of synthetic biology. With the novel artificial
organelles, we now have the option of generating various processes in the cell anew,
or to optimise them." The method is not limited to yeast cells, but can be
utilised for eukaryotic cells in general. It can also be applied to other
issues, e.g. for reactions that have previously not been able to take place in
living cells because they may require enzymes that would disrupt the cell
metabolic process.
Publication:
Mara Reifenrath, Mislav Oreb, Eckhard
Boles, Joanna Tripp: Artificial
ER-Derived Vesicles as Synthetic Organelles for in Vivo Compartmentalization of
Biochemical Pathways, in:
ACS Synthetic Biology:
Further
information:
Dr. Joanna Tripp
Institute for Molecular Biosciences
51 Frankfurt
Tel.:
+ 49 69 798 29516
j.tripp@bio.uni-frankfurt.de